10 May 2016

Progress Report 2: Construction Progress and Required Structural Interventions
Contents

1. EXECUTIVE SUMMARY ... 4
2. INTRODUCTION .. 5
3. PURPOSE OF THIS REPORT ... 5
4. CONSTRUCTION PROGRESS ... 6
 4.1. The removal of inappropriate later internal interventions .. 7
 4.2. The removal of the surface beds on ground floor ... 7
 4.3. Excavation of the lift pit .. 7
 4.4. Demolition of existing structures .. 8
 4.5. Demolition of interior walls to Block C .. 9
 4.6. Internal Plaster / Paint .. 9
5. CONTEMPORARY AND STRUCTURAL INTERVENTIONS BASED ON CURRENT OBSERVATIONS 11
 5.1. CONDITION OF EXISTING STRUCTURE .. 11
 5.2. LIME PLASTER APPLICATION AND METHODOLOGY .. 12
 5.3. TIMBER FLOORBOARDS .. 13
 5.4. BRACING OF EXISTING EXTERNAL WALLS BY MEANS OF STEEL BRACING FRAMES 14
 5.4.1. Support to old masonry walls ... 14
 5.4.2. Support to timber floor and roof joists ... 17
6. CONCLUSION ... 18
7. RECOMMENDATION .. 18
List of Figures

Figure 1: Block reference numbers ... 5
Figure 2: Extract for Section 34 application: Sacrificial elements now being demolished 6
Figure 3: Concrete surface bed being removed on ground floor, Block A, in all 5 bays 7
Figure 4: Exploratory excavation of the lift pit by the archaeologist, Block A, ground floor 8
Figure 5: Demolition of Block G underway ... 8
Figure 6: Evidence of older fabric on ground floor Block C (in the wall behind to the left) within the later structure ... 9
Figure 7: Demolition of internal walls in the later section ... 9
Figure 8: Decorative motifs visible underneath layers of later paint ... 10
Figure 9: Delaminating and damaged plaster against internal walls ... 11
Figure 10: Internal brickwork exposed showing later interventions in original brickwork 11
Figure 11: External Plaster along the Longmarket Street façade in a reasonable condition apart from localised areas .. 12
Figure 12: Internal walls exposed and prepared to take lime plaster. Note the later brickwork relieving arch over the frieze window in the centre image ... 12
Figure 13: Floor boards removed for inspection of joists and replacement by boards from elsewhere in the building (top two images). The flooring in the images below are in good condition and are to be restored without removal ... 13
Figure 14: Structural concerns .. 14
Figure 15: Cracks in the Buitenkant Façade. Note the crack along the line of the tie rod on the left, at the right side of the door ... 15
Figure 16: Ground floor: Introduction of steel bracing frames ... 16
Figure 17: First Floor: Introduction of steel bracing frames ... 16
Figure 18: First Floor: Introduction of steel bracing frames ... 17
Figure 19: Floor joists to be supported by the steel portal frame ... 17
Figure 20: Existing roof joists steel support plates anchored through the external walls 18
1. EXECUTIVE SUMMARY

This report deals with the progress on site over the first month of construction, as well as the structural interventions that are considered necessary, based on current observations after superficial items have been stripped away. It is now possible to assess the integrity of the structure more clearly. This has resulted in a substantial reduction, both in extent and size, of the steel portal frame members to support the existing fabric, as was originally envisaged. Not only will this result in a substantial cost savings, but will also minimise the visual impact on the existing fabric. Likewise, the extent of repairs and possible replacement required to the timber floors and support structure has also been re-assessed, and was found to be less than anticipated.

The demolition phase of the project has started. All inappropriate later interventions such as plasterboard ceilings, concrete block dividing walls and drywall partitioning have been removed. Demolition work is in various stages of completion on the structures recommended for removal in the original Section 34 application dated 5 August 2015, (as approved in September 2015). These include the following:

- The concrete surface beds on ground floor.
- The 1970’s concrete block dividing walls on ground floor
- The three story building in the back courtyard (Block G)
- The ‘lean-to’ toilet block in the old courtyard (Block A1)
- The fire escape in the new courtyard. (Part of Block G)

In addition to the demolition work, excavations to the lift pit has started under strict supervision of the archaeologist. Although some minor artefacts (pieces of old pottery and animal bones) have been found in the upper layers, nothing of any significance was discovered. The deeper the excavation went, (up to +- 1.5m) the more sterile the excavation has become. A comprehensive report on the archaeological monitoring will be presented separately.

In order to do a thorough inspection of the structural timber, some floorboards have been removed for inspection. It was found that although some boards have deteriorated to the point where they are no longer structurally sound, most boards, or parts of boards, can be re-used. It is anticipated that, with the removal of floorboards over the openings for the lift, the double volume as well as the slot against the Buitenkant Street façade, enough wide boards in a good condition can be reclaimed in order to repair the floors without the introduction of any new boards.

Furthermore, evidence of decorative paint work at plinth level against some internal walls has been uncovered and is currently being investigated by a specialist in order to restore a representative panel of the paint work. Preserving some internal walls where the existence of older decorative paint panels are quite evident is suggested. Despite the fact that the plaster on some areas of the internal wall of the Buitenkant façade need to be stripped, it is suggested that that parts of the plaster against this façade be retained and restored in order to preserve and demonstrate the layering in the paintwork.

After careful investigation of the existing structure, the type and extent of structural intervention to stabilise the failing masonry structure, has been finalised. Steel bracing in strategic positions, anchored through the existing masonry in order to stiffen the structure, will have to be done. In addition, some of the rafters will be anchored through the external wall of the building by means of anchor plates to provide better fixing of the rafters, as well as to mechanically tie the wall back to the structure to counter any outward pressure.
2. INTRODUCTION

This is the second report submitted in fulfilment of one of the conditions of the Heritage Western Cape approval for the renovations to the Old Granary as stated in the ROD dated 17 September 2015, requesting regular reports on the design development, technical detailing and conservation methods followed during the restoration process of the Old Granary. This reports should be read in conjunction with the approved Section 34 application dated 5 August 2015.

3. PURPOSE OF THIS REPORT

The report deals with progress up to date and conservation issues that became evident during the first month of construction, as well as the structural interventions required to stabilise the external façade, as the structural stability of the building is considered fundamental in the preservation of the historic core of the Old Granary.

Apart from the progress, structural support and interventions to the following are also addressed:

- Masonry walls -
 - Stabilisation by means of steel interventions
 - Stripping of plaster
 - Lime plaster

- Floors and roof support -
 - Floor boards and support joists
 - Roof joists

Figure 1: Block reference numbers
4. CONSTRUCTION PROGRESS

The site was handed over on 22 March 2016 to Edel Construction. Due to Easter, very little work, apart from site establishment, was carried out until the first week of April. The focus for the first few weeks of construction was on the demolition and removal of clearly undesirable later additions (refer to figure 2 below). According to the HWC ROD of 17 September 2015, the work was coordinated with an archaeologist (Harriet Clift from the City of Cape Town) who was present on site during the execution of this part of the work. Her involvement is ongoing and any ‘below ground’ activities are strictly monitored and regularly reported on.

![Diagram of building plans](image)

Figure 2: Extract for Section 34 application: Sacrificial elements now being demolished

The following work was completed by the contractor, or is currently in progress:
4.1. The removal of inappropriate later internal interventions

Superficial and inappropriate functional interventions done in the later part of the 1900’s, such as plasterboard ceilings, concrete block dividing walls, drywall partitioning, blocked-up openings and unsuitable floor finishes have been removed. This allowed a better assessment of the existing structural elements and finishes to inform decisions on restoration and / or replacement.

4.2. The removal of the surface beds on ground floor

The surface beds on ground floor have also been removed. These were installed during the latter part of the 1900’s, probably around 1950. The thickness of the surface beds varied from 50mm up to 150mm of mass concrete. Below the surface beds was clean sand fill, confirming that it was a later intervention. Below the fill, evidence of bearer walls as timber floor support structures was found. These walls are present only in the three bays under the original part of the building (Block A central part), while the surface beds in the wings in Block A along Longmarket Street and adjacent to the Homecoming Centre were on fill only (refer to figure 3 below).

In terms of the design, once the surface beds have been removed, the floor levels need be lowered by no more than 350mm to an appropriated level to tie in with adjacent levels such as Buitenkant Street, the courtyard and the Longmarket Street wing (Block D). The existing ramp at one of the doors in one of the three central bays, leading to Buitenkant Street will be replicated and adjusted to comply with disabled access requirements.

The use of these rooms will be exhibition / museum, and the new floor finish will be polished concrete.

Figure 3: Concrete surface bed being removed on ground floor, Block A, in all 5 bays

4.3. Excavation of the lift pit

The excavation of the lift pit has started. The pit needs to be excavated to a depth of approximately 1.5 to 2m. The archaeologists has done test excavations between the older bearer walls to confirm that the likelihood of important archaeological material is minimal. A comprehensive archaeological monitoring report will be submitted separately.
The original foundations were found to be at about 1.2m below the level of the existing floor, which means that the excavation of the lift pit, which is about .5 to 1m away from the nearest vertical walls, will be unlikely to have any structural implications.

On completion of the test excavations, the archaeologist expressed satisfaction that the contractor can proceed with excavating the rest of the pit.

The possibility of exposing some of the bearer walls and to incorporate it within the design layout of the exhibition space is being investigated.

4.4. Demolition of existing structures

The demolition of existing structures has also started. The methodology of the demolition has been agreed between the structural engineer and the contractor. In order to minimise vibration, the use of mechanical equipment is limited. Where ever possible, demolition is done by means of sledge hammers and lighter electrical appliances such as drills and angle grinders.
Existing walls in the immediate vicinity of the demolition works are being propped during the process to prevent movement. The demolition on block G is about 50% done (refer to figure 5 above, while demolition to Block A1 is yet to start.

4.5. Demolition of interior walls to Block C

The demolition of interior walls on ground floor in Block C is also well underway. In the Jacobs report, and referred to in the original Section 34 application, it was noted that evidence of older material was to be expected on ground floor. Indeed two walls with original stone, probably from the earlier part of the 19th century were uncovered (refer to figure 6 below).

![Figure 6: Evidence of older fabric on ground floor Block C (in the wall behind to the left) within the later structure](image)

By adjusting the escape stair layout on ground floor, it is possible to retain the original dividing wall (to the left in figure 6), and by reorganising the internal spaces within the bathroom layout, the old fabric in the other wall will also be retained (to the right in figure 6).

No evidence of unknown older material has been uncovered on any of the higher levels (refer to figure 7 below).

![Figure 7: Demolition of internal walls in the later section](image)

4.6. Internal Plaster

Cleaning of the internal walls on ground, first and second floors has started in order to establish the extent of the re-plastering required. From this exercise, two things have been established:

- There is evidence of decorative paintwork under the more recent layers of lime wash / paint on ground and first floors. However, no evidence of decorative paint work was uncovered on the first floor. The motifs on these walls are overlapping, and a layer with a decorative dado motif might be found over an earlier and simpler motif (refer to figure 8 below, image to the right). Unfortunately much damage was done to parts of the earlier finishes and it is doubtful if much of the decorative paintwork can be recovered.
Current investigations are underway by an expert, Bettina Elten, an art restorer with extensive international experience in the restoration of paintings on stone, stucco and plaster. A number of representative samples of the decorative paintwork are being exposed by her for possible restoration and retention. In some cases up to 13 layers of paint, some fairly recent, have been uncovered. (Refer to Bettina’s report attached as Annexure A)

The oldest layer carries black horizontal lines on an unpainted background directly on the plaster (refer to the image in the centre in figure 8). In later layers these lines are used to horizontally border areas of different pastel colours.

Depending on the outcome of the investigations, defined panels, and if possible, whole walls might be preserved and renovated or partially renovated to preserve the layering. The current suggestion is that the paint layers on the ground and first floors of parts of the internal face of the Buitenkant Façade be peeled of and restored / partially restored as a display of what the wall looked like throughout their lifetime.

Figure 8: Decorative motifs visible underneath layers of later paint

- Large sections of the internal plaster on the first and second floors are delaminating. This probably is due to a combination of water ingress and later layers of synthetic paint which prevented walls from ‘breathing’.

In other areas plaster have been removed for research purposes. These areas have been identified and the loose plaster has been removed to be re-plastered using lime plaster (refer to figure 9 below).

It was also found that substantial sections of internal plaster have been replaced with ordinary cement plaster, as late as the end of the 20th century, when the timber architraves around some windows have been removed and replaced with plastered reveals. In addition, where windows were replaced with doors facing into the courtyards, the newer elements were built in with fired clay bricks and plastered over with cement plaster.
These sections have been identified. The plaster has been removed in certain areas and they are being prepared for re-plastering with lime plaster (refer to figure 10 below). The plaster specification and methodology is described later in this document.

5. CONTEMPORARY AND STRUCTURAL INTERVENTIONS BASED ON CURRENT OBSERVATIONS

5.1. CONDITION OF EXISTING STRUCTURE

If anything in this building speaks of layering, it is the walls. There is evidence of numerous openings, seemingly in random positions everywhere within the old structure, some bricked up and plastered over, others just bricked up.
Relieving arches and evidence of older walls are also visible in a number of places (refer to figure 10 above).

Unfortunately the unfired clay bricks in the older structure have deteriorated badly in some areas due to water ingress and lack of protection. In other cases, movement of floor joists occurred because of the deterioration of support sockets in the unfired clay bricks of the weather walls due to water ingress. These movements not only caused the flooring to deflect badly, but the water ingress also resulted in the continued deterioration of end conditions of the joists and accelerated the deterioration of the unfired clay bricks.

5.2. LIME PLASTER APPLICATION AND METHODOLOGY

As is evident from the discussion of the walls and finishes above, the correct application of lime plaster is considered to be a very important aspect of the restoration process. It was found that significant delamination has taken place over time, and that large areas of the internal walls (around 70%) of the old core building, will have to be removed and re-plastered (refer to figures 9 & 10 above).

Figure 11: External Plaster along the Longmarket Street façade in a reasonable condition apart from localised areas.

Figure 12: Internal walls exposed and prepared to take lime plaster. Note the later brickwork relieving arch over the frieze window in the centre image.
The external plaster was found to be in a reasonable condition and only about 30% of the external plaster need to be repaired, only along the Longmarket Street façade. It was also found that the plaster along this facade has been repaired on a number of occasions over the years, using either pure cement plaster or a cement / lime plaster mix.

The removal of external plaster will be limited to areas where plaster is damaged or delaminating beyond repair, or where plaster has to be removed for structural reasons (e.g. to fix anchor plates). Plaster sample panels have been applied on site using various mixes, including a small proportion of cement, pure lime plaster and using Philippi and Malmesbury sand respectively.

After inspection of the sample panels, research, advice from numerous experts, and much consideration, it was decided to rather use a pure lime plaster mix without the addition of any Portland cement for internal plaster and a small amount of Portland cement added to the lime plaster for external plaster. Contractual time constraints however prevent the purist approach of using un-slaked lime and do the hydration on site. Therefore pre-hydrated bagged lime will be used.

Thorough preparation of wall surfaces is essential for good plastering. This is being done carefully so as to avoid damaging the underlying brickwork. Once the damaged plaster has been removed, the wall is cleaned carefully. Loose bits of brick, dust, loose grit and oil that may prevent the new plaster from adhering to the wall is removed.

The plaster is applied in three layers, the first as a scratch coat to ensure adherence to the unfired clay brick, the second coat (floating coat) of about 10mm thick will be applied over a fine nylon mesh. The third coat, (setting coat) will then be applied in two thin layers making up a total thickness of 3 to 5mm. Appropriate drying time between the application of the various layers will be allowed.

5.3. TIMBER FLOORBOARDS

In order to do a thorough inspection of the structural timber, some floor boards have been removed (refer to figure 13 below).

![Figure 13: Floor boards removed for inspection of joists and replacement by boards from elsewhere in the building (top two images). The flooring in the images below are in good condition and are to be restored without removal.]
It was found that although some boards have deteriorated to the point where they are no longer structurally sound, most boards, or parts of boards, can be re-used. The areas where boards have been deteriorated beyond repair have been investigated and boards removed to re-align the floor joists (refer to figure 13 above).

It is anticipated that, with the removal of floorboards over the openings for the lift, the double volume over the back entrance into the old courtyard as well as against the Buitenkant Street façade, enough wide boards (approximately 60m²) in a good condition, will be reclaimed to replace the damaged floors without the introduction of new boards.

Flooring in certain areas can be repaired but will remain slightly undulated, even with supporting joists adjusted and boards realigned to lessen the effect. However, it will be within reason and is considered acceptable as part of the overall patina of age.

The finishing to the timber floors have been discussed at length in the previous report. The use of heavy mechanical drum or rotary sanders is not anticipated, but the use of mechanical sanding equipment will be required to even out any unacceptable differences in height between the floor boards. Hand sanding, as proposed for the rest of the floors, will not be adequate.

All floor and roof joists have been inspected and can be repaired or additional support be introduced (refer to paragraph 5.4.2 below), without the use of any new timber joists.

5.4. BRACING OF EXISTING EXTERNAL WALLS BY MEANS OF STEEL BRACING FRAMES

5.4.1. Support to old masonry walls

As indicated in the original Heritage Statement, there is a concern about structural stability of the front facade facing the Buitenkant Street, as well as the long continuous wall along the façade facing Longmarket Street remains. Previous interventions and restorations have stabilised parts of the building but have simultaneously compromised other parts (refer to figure 14 below).

The impact of the increase of traffic related vibrations, as well as water ingress over the years have hugely contributed to the deterioration of the structural integrity of the masonry structure of the old building, mainly on ground and first floor levels.

Vertical cracks are evident in the internal walls at right angles to the front façade, some in lateral walls a few metres back, others against the front façade, indicating continuous structural movement of this facade and immediate supporting walls out of the vertical. Cracks are also visible along the line of the tie rods and anchor plates on the front façade (refer to figure 15 below). In the photo on the left, a crack is clearly visible to the right of the front door, in line with the overhead tie rod and
anchor plate. In the photos in the centre and to the right, cracks are visible in the walls at right angles to the front façade.

Previously parts of the long unsupported wall at the first floor level along Longmarket Street have collapsed under its own weight and had to be rebuilt, along with the roof structure. Other parts of this wall is still unstable and will also have to be provided with additional support.

Various alternatives for the stabilisation of the existing structure were considered. These ranged for chemical solutions to adding additional structural layers to the existing brickwork. Each of these was dismissed on the basis that it was too damaging to the preservation of the original fabric.

In order to stabilise the structure, both masonry and timber, the introduction of steel portal bracing structures on ground and first floor levels at various strategic positions is proposed.

![Figure 15: Cracks in the Buitenkant Façade. Note the crack along the line of the tie rod on the left, at the right side of the door.](image)

As opposed to the original proposal, this structure will carry no loading (apart from some floor joists on ground floor as discussed later), and will mainly serve as a bracing mechanism against any lateral movement of the masonry walls. For this reason, it is not necessary to tie the steel structure to lower levels, and no footings are required on the new ground floor screed, as was proposed.

This approach allowed the extent of the frames to be minimised and only to be installed where there is real concern about the stability of the external walls. As the steel members will act as bracing rather than transferring load, their sizes have been minimised to 260 x 90 PFC’s vertical members on ground floor, and 200 x 75 PFC’s on all other floors. Horizontal members are 245 x 146 I beams on ground floor, and 203 x 133 x 30 I beams between the timber floor - and roof joists on first and second floors (where applicable).

The steel bracing frames will be clearly distinguishable from the older fabric as a contemporary intervention, and will touch the existing walls lightly.

Refer to figures 16, 17 & 18 for the exact positions of where these frames will be introduced.
Figure 16: Ground floor: Introduction of steel bracing frames

Figure 17: First Floor: Introduction of steel bracing frames
The walls, where required, will be mechanically anchored to the steel bracing on the inside of the building by means of steel pins, and on the outside by means anchor plates and carbon fibre strips under new plaster (localised patches) to strengthen and stabilise the facade.

5.4.2. Support to timber floor and roof joists

As mentioned above, on ground floor against the Longstreet façade, the steel bracing frame will also serve as support for the timber joists as the wall pockets for the original joists have deteriorated to such an extent that supporting the joist on the wall is not feasible. In this instance, the bracing portal frames will therefore fulfil a dual purpose by not only bracing the walls but also to provide support to the timber floor joists where the end conditions of the joists have deteriorated badly, and/or where the bearing capacity of the support pockets in the walls are not sufficient to bear the point load.
At the rafter level, where the end conditions are deemed to have deteriorated to such a condition that the structural integrity of the joists are compromised beyond repair, steel support and anchor plates, in keeping with what have been used in the previous restoration, will be utilised to strengthen the bearing capacity of the joists after the brickwork around the pocket has been stabilised. The rafters will be anchored through the external wall of the building by means of anchor plates. These will be tied together through the introduction of carbon fibre strips recessed into the depth of the plaster and finished over, as described above (refer to figure).

This will not only mechanically tie the wall back to the structure to counter the outward pressure, but will also provide better fixing to the rafters where the end conditions have deteriorated. This method has already been used in previous restorations of the building and was also part of the original language of the building.

Figure 20: Existing roof joists steel support plates anchored through the external walls

6. CONCLUSION

The construction work is progressing well and on programme. Apart from the discovery of the decorative motifs under existing layers of paint on the internal walls, no unexpected discoveries were made. The existence of the old fabric on ground floor in block C, was expected, and existing later fabric was carefully removed to expose its whereabouts.

Appropriate experts are being consulted as and when required, and their recommendations are incorporated in the restoration and construction processes. In addition, the contractor is taking due care as instructed, and all existing material removed during the construction process is stored on site for possible later use.

Restoration methods and interventions are well considered and are as far as possible perfectly in line with the basic theoretical principles of restoration, among which are reversibility, compatibility, and distinguishability.

7. RECOMMENDATION

That the above progress report with the restoration actions and methods being applied be ratified by BELCOM and that project can proceed as envisaged.

KOBUS VAN WYK
GAPP ARCHITECTS / URBAN DESIGNERS
10 May 2016
ADDENDUM 1

Dear Margot, Ian and Jack,

After spending some time at the Granary I am coming up with ideas, which I would like to share with you. I would be grateful for your input, as I will go back on site on Monday and could then better direct my focus to meet your requirements.

The building is huge and as I am familiarizing with it, I become more aware of it’s importance and beauty, as a structure which has been modified so many times in the course of it’s history.

I have not understood it all, as it is very complex and much of the data is hidden. I am aware of many questions we all seem to have and of the potential research that can still be carried out on the building, to understand it’s history and transformations, now or in future occasions. There is a lot of information contained in the surface treatments of the walls (inside and outside), that in a destructive intervention will be lost forever.

With this thought in the back of my mind I have tried to focus on identifying those spots that contain the most information, with the idea of preserving only small parts of the older plaster and paint layers.

This is difficult, as there are so many different rooms and within every room there are several different situations. The spaces were divided into rooms that no longer exist, and areas of different colours met in one same room which was not unusual in the 19th century.

I have found up to 13 layers of paint, of which the more superficial ones are definitely not very old. They are synthetic and dissolve in acetone, and can also be found in the later additions of the building towards Harrington street.

But some of the deeper layers are original or to be attributed to the very first alterations. If I understand it right the initially private home and bakery was transformed into customs offices, granary and magistrate court in only the first 15 years of it’s existence! These first layers all seem important to me.

The very first layer carries black horizontal lines on an unpainted background and directly on the plaster. Maybe these lines were used for placing decorative moulding/friezes/cornices which were
common in those times. In later layers these lines are used to horizontally border areas of different pastel colours.

Some of these lines are repainted over older ones either at the same height or at different heights. In one spot I also found a tiny circle of that same black.

The ground floor seems to have no other old decoration but those first horizontal lines, but I haven’t had the time for closer inspection.

The stencil decorations are old but not original. A later layer is dark green with gold paint. The situations are many and if we meet on site it will be easier for me to illustrate what I have found so far.

Ideally, to keep all this, I would preserve the old plaster, break off what is fragile and falling, clean it and replaster on top. Nobody will ever be able to replicate these old plasters, and keeping them is best for the balance and cohesion of the whole building. Not to mention the information that will be lost by stripping.

Coming from an old country like Italy, where I was trained and spent most of my working life, I tend to have a conservative approach, but am also fascinated and open to contemporary forms of architectural intervention. So if preserving it all is not an option, I suggest to keep a large chunk of wall in each room as integral part of the modern restoration.

I suggest portions of large dimension, because a small square may carry the information for a particular spot, but will not transmit the complete idea of how these rooms were decorated. The areas of colour change from the skirting to just under the ceiling and the perception in space of these decorations will be lost.

On Margot’s suggestion I tried to identify the most suitable locations for panels to be maintained in each room. That is when I had the idea of preserving the entire inside wall of the façade. This would work from an aesthetic point of view as the symmetry of the spaces will not be disturbed. This wall is already a striking testimony of the architectural modifications, with the windows and main entrance divided between the ground and first, and between first and second floor. Unfortunately this wall is not so well preserved (the inside walls are in better condition than the outside walls) and has large chunks of replastering on the ground floor. Other parts of it have already been stripped. But on the other hand it could easily be kept separate from a modern intervention on the rest of the spaces, by leaving a small gap also on floor and ceiling to symbolize the gap in time. Furthermore the beveled edges around the windows are interesting to preserve.
This wall could be treated by a conservator, exposing the more important first layers, preserving only those parts that are not fragile or of relevant significance. A minimum intervention of integration with mortar and colour can be carried out so that the layers can easily be read.

I imagine this to look very beautiful, in combination with the modern intervention that you are intending to carry out. Cape Town is a relatively young city, but it is aging and these monuments are gaining in importance, for us and for future generations. In some way it could be a local pilot project.

I came across some beautiful examples on line, of conservation projects where old and new meet. Some won the prizes of “Domus restauro e Conservazione Fassa Bortolo”, which is an international competition that is run by the department of Architecture of the University of Ferrara. These prizes are won by projects that were able to consciously interpret conservative principles using contemporary forms of expression. Also Carlo Scarpa’s work in Castelvecchio and in Venice are beautiful examples of the combination of old and modern.

To make this suggestion practically sustainable I imagine that there are financial and time issues to be respected. The budget which is now allocated to stripping, consolidating, plastering and painting the inside wall of the façade could be examined to see if it could cover the cleaning, consolidating and esthetic presentation of the original plasters. And depending on the amount the work can go more or less into detail.

I am not sure about what time frame you are working in, and this too will need to be looked at. It would be possible to set up a small team of specialized workers.

I will be on site on Monday to spend some more time on the ground floor and to have a closer look at the wall of the façade. Please let me know your thoughts, I will be waiting to hear from you.

Kind regards,

Bettina